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We derive equations to describe the flow of multiple superposed layers of inviscid,
incompressible fluids with constant densities over prescribed topography in a rotating
frame. Motivated by geophysical applications, these equations incorporate the
complete Coriolis force. We do not make the widely used ‘traditional approximation’
that omits the contribution to the Coriolis force from the locally horizontal part of
the rotation vector. Our derivation is performed by averaging the governing Euler
equations over each layer, and from two different forms of Hamilton’s variational
principle that differ in their treatment of the coupling between layers. The coupling
may be included implicitly through the map from Lagrangian particle labels to particle
coordinates, or explicitly by adding terms representing the work done on each layer
by the pressure exerted by the layers above. The latter approach requires additional
terms in the Lagrangian, but extends more easily to many layers. We show that our
equations obey the expected conservation laws for energy, momentum and potential
vorticity. The conserved momentum and potential vorticity are modified by non-
traditional effects. The vertical component of the rotation vector that appears in the
potential vorticity for each layer under the traditional approximation is replaced by
the component perpendicular to the layer’s midsurface. The momentum includes an
additional contribution that reflects changes in angular momentum caused by changes
in a fluid element’s distance from the rotation axis as it is displaced vertically. Again,
this effect is absent in the traditional approximation.

1. Introduction
Geophysical fluid dynamics, the study of the motion of the Earth’s atmosphere
and oceans, is concerned with the behaviour of rotating, stratified fluids, over wide
ranges of length and time scales, and often in complex geometries. Simplified and
approximate models therefore play a very important role in providing insight into
processes that occur in the full equations. Shallow water equations are widely used
as conceptual models because they capture the interaction between rotation and
stratification and between waves and vortices evolving on disparate time scales. The
simplest shallow water equations describe the motion of a single layer of fluid with
a free surface. They may be derived by averaging the three-dimensional equations
of motion across the layer, under the assumption that the layer’s depth is small
compared with its horizontal dimensions. Many more phenomena may be described
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by shallow water models with two or more distinct layers of different densities. These
models capture some of the baroclinic effects that arise in a stratified fluid when
the pressure gradient is not parallel to the density gradient. For instance, two-layer
shallow water models describe the troposphere and the stratosphere (e.g. Vallis 2006),
the upper mixed layer and the lower ocean (e.g. Salmon 1982b), or a deep ocean
current flowing under relatively quiescent fluid (e.g. Nof & Olson 1993).

This paper is primarily concerned with the Coriolis force due to the Earth’s
rotation and its approximation in idealized models. The angular velocity vector Ω

is directed parallel to the Earth’s axis, so at a typical point on the Earth’s surface
Ω has components in both the locally vertical and locally horizontal directions.
The exceptions are the poles, where Ω is purely vertical, and the equator, where
Ω is purely horizontal. However, the contribution to the Coriolis force due to the
locally horizontal component of Ω is widely neglected. This approximation was
named the traditional approximation by Eckart (1960a), on the grounds that it was
widely used, but seemed to lack theoretical justification. Phillips (1966) later showed
that the traditional approximation could be justified as a consequence of a shallow
layer approximation, one in which vertical length scales were small compared with
horizontal length scales.

However, interest has recently grown in the effects of the Coriolis terms that are
neglected under the traditional approximation. This interest is driven by improvements
in numerical simulations, which now reach shorter horizontal length scales for
which the shallow layer approximation becomes questionable. A recent review by
Gerkema et al. (2008) explored the sparse material that is available on this topic.
The effect of including the ‘non-traditional’ components of the Coriolis force is
sometimes quite pronounced, particularly in mesoscale flows, such as Ekman spirals
and deep convection (Leibovich & Lele 1985; Marshall & Schott 1999), and in internal
waves (Gerkema & Shrira 2005a ,b). This is consistent with the findings of the UK
Meteorological Office, which in 1992 abandoned the traditional approximation in their
unified model for the atmosphere (Cullen 1993). One might expect non-traditional
effects to be even more pronounced in the oceans. The oceans contain substantial
wave activity at or near inertial frequencies (Munk & Phillips 1968; Fu 1981), and
regions of very weak stratification where the Brunt–Väisälä or buoyancy frequency N

is less than ten times the inertial frequency (Munk 1981). van Haren & Millot (2005)
report observations of ‘gyroscopic’ waves in areas of the Mediterranean with little or
no stratification (N = 0 ± 0.4f ) to within the uncertainty of their measurements.
These gyroscopic waves cannot be explained without invoking non-traditional
effects.

In this paper, we derive multilayer shallow water equations that include the complete
Coriolis force, in contrast to the conventional shallow water equations that rely upon
the traditional approximation in their derivation. We thus extend the derivation
of single layer shallow water equations by Dellar & Salmon (2005) to encompass
several superposed layers of inviscid fluid of different, constant densities flowing
over topography, as illustrated in figure 1. Dellar & Salmon (2005) corrected an
earlier attempt by Bazdenkov, Morozov & Pogutse (1987), whose equations failed
to conserve either energy or potential vorticity in the presence of topography. Our
multilayer equations provide a useful idealized setting for studying the interaction
between density stratification and rotation, and the resulting sets of two-dimensional
equations are practical for numerical studies of some of the phenomena listed
above.
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Figure 1. The layered model of the ocean. The upper surface of each layer is given by
z = ηi(x, y, t), and the layer thickness is given by hi(x, y, t).

The three-dimensional Euler equations for a rotating, stratified, ideal fluid possess
conservation laws for energy, momentum and potential vorticity. Attention in
geophysical fluid dynamics has been focused on model equations that share the same
conservation laws, which are easily destroyed by making approximations directly in
the equations. In addition to a derivation by averaging the three-dimensional Euler
equations, we derive our multilayer shallow water equations by making approxim-
ations in a variational principle, Hamilton’s principle of least action, as formulated
for a three-dimensional ideal fluid. The previously mentioned conservation laws are
related to symmetries in the variational principle by Noether’s theorem (see § 5) and
any equations derived by making approximations that preserve these symmetries
will possess equivalent conservation laws. The single-layer shallow water equations
may be readily derived from Hamilton’s principle by integrating a three-dimensional
Lagrangian across the layer (Salmon 1983, 1988, 1998). However, the extension to
two or more layers is considerably more involved, because the derivation relies upon
introducing Lagrangian particle labels within each layer. The transmission of pressures
between layers requires some means to synchronize the positions of particles in the
different layers. Our first derivation is equivalent to Salmon’s (1982b) derivation of
the two-layer traditional shallow water equations from Hamilton’s principle. Salmon
(1982b) coupled the two layers using a double integral of a delta function across both
layers in the Lagrangian (see the Appendix). This approach does not readily extend
to many layers, because one would need integrals across all N layers. We avoid the
integrals across multiple layers by transforming each of the integrals into an integral
over layer i when deriving the equations of motion for layer i. However, the calculation
is still sufficiently involved that we present a second derivation that explicitly includes
the work done by the pressure exerted by other layers in the Lagrangian.

The non-traditional components of the Coriolis force appear through terms
involving the half-layer heights zi = (1/2) (ηi + ηi+1). This is because the non-
traditional terms are linear in z when the fluid moves approximately in columns,
and layer averaging a function that is linear in z is equivalent to evaluating the
function at the midpoint of the layer. In particular, the potential vorticity within each
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layer involves the component of the planetary rotation vector Ω that is normal to the
half-layer surface (as in Dellar & Salmon 2005) rather than the vertical component
as found under the traditional approximation.

The equations derived in this paper are also relevant for the development of large-
scale numerical ocean models. Because of the large disparity in the horizontal and
vertical length scales, many three-dimensional numerical ocean models use different
discretizations in the horizontal and vertical coordinates. In particular, it is common
to use an isopycnal coordinate, a constant density surface, which is also a Lagrangian
coordinate, in the vertical to prevent excessive diffusion across tilted isopycnal surfaces.
One may think of a layered model with many layers, as illustrated in figure 1, as
arising from a Lagrangian finite-difference discretization in the vertical. The most
well-known model in this class is the Miami Isopycnal Coordinate Ocean Model
(MICOM) as described by Bleck et al. (1992) and Bleck & Chassignet (1994). The
multilayer equations derived in this paper could be used to extend a layered ocean
model like MICOM to include the complete Coriolis force.

2. Three-dimensional equations and coordinates
We model each layer as an inviscid, incompressible, fluid of constant density ρi in a
frame rotating with angular velocity Ω . The fluid’s motion is thus governed by the
Euler equations

∂ui

∂t
+ (ui · ∇) ui + 2 Ω × ui +

1

ρi

∇pi + ∇Φ = 0, ∇ · ui = 0, (2.1)

in conjunction with boundary conditions at the interfaces between layers (see below).
Here ui and pi are the velocity and pressure within the ith layer. The geopotential Φ

is the combined potential for the gravitational acceleration and the centrifugal force
due to rotation.

The geopotential gradient is much larger than the inertial and Coriolis terms in
geophysically reasonable parameter regimes, so it must be balanced primarily by the
pressure gradient. We therefore set up a coordinate system in which ∇Φ = g ẑ, with
g being the gravitational acceleration (which by convention includes the centrifugal
force). The vector ẑ is a unit vector in the direction that is locally upward as defined by
∇Φ , and the horizontal directions are tangent to the surfaces of constant geopotential.

In theoretical studies of geophysical fluid dynamics, it is common to use
Cartesian or pseudo-Cartesian coordinates (Pedlosky 1987; Salmon 1998; Vallis
2006). By pseudo-Cartesian coordinates we mean the use of curvilinear coordinates
under an approximation that allows the curvilinear metric to be neglected in the
equations of motion. Curvilinear coordinates are necessary because the ‘horizontal’
coordinates should lie within, rather than merely be tangent to, the surfaces of
constant geopotential. This is the correct interpretation of the so-called beta-plane
approximation to spherical geometry (Phillips 1973).

The Earth’s angular velocity vector Ω is directed parallel to the line from South
pole to North pole. However, the direction of Ω relative to local coordinates with ẑ
vertical changes with latitude, so Ω must be spatially varying in the pseudo-Cartesian
coordinates of the ocean model presented in figure 1. This approximation, retaining
only the latitude dependence of the rotation vector from spherical geometry in an
otherwise pseudo-Cartesian formulation, is known as the beta-plane approximation.
The simpler f-plane approximation arises from taking Ω constant, and becomes valid
on length scales much smaller than the planetary radius.
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We allow for arbitrary orientation of the x and y axes, generalizing the conventional
axes in which the y axis points North and the x axis points East. We write
Ω =(Ωx, Ωy, Ωz), and allow Ωx , Ωy and Ωz to be arbitrary functions of x and
y. The three-dimensional vector field Ω must be non-divergent, ∇ · Ω = 0, to ensure
conservation of potential vorticity (Grimshaw 1975). To allow for spatial variation
of Ωx and Ωy , we must therefore allow Ωz to depend on z. We take Ωz = Ωz(x, y, z)
while Ωx = Ωx(x, y), Ωy =Ωy(x, y). This is sufficiently flexible to capture a variety
of β plane approximations in which Ωx and Ωy , as well as Ωz, depend on latitude.
Integrating ∇ · Ω = 0 with respect to z yields the following expression for Ωz:

Ωz(x, y, z) =Ωz0(x, y) −
(

∂Ωx

∂x
+

∂Ωy

∂y

)
z, (2.2)

where Ωz0 = Ωz|z = 0.
Dellar (2009) showed that one may derive (2.1) in a pseudo-Cartesian form,

together with (2.2) and expressions for Ωx and Ωy , by introducing suitable curvilinear
coordinates into Hamilton’s principle on a sphere, and then approximating for motions
on length scales that are small compared with the planetary radius. In this derivation,
the z-dependence of Ωz arises as a pseudo-Cartesian approximation to the dependence
of the angular momentum of a particle rotating with the planetary angular velocity
Ω on the spherical radial coordinate.

3. Derivation by layer averaging
One route to deriving our extended shallow water equations is via an extension of
the standard derivation of the traditional approximation shallow water equations by
averaging across layers. We obtain two-dimensional equations for the depth-averaged
horizontal velocities and the layer depths by integrating the three-dimensional
equations of motion over each fluid layer. Our approach follows the derivation
of the non-rotating and weakly nonlinear ‘great lake’ equations by Camassa, Holm &
Levermore (1996), as adapted by Dellar & Salmon (2005) to include the Coriolis force.
Our treatment of multiple layers is similar to Liska & Wendroff’s (1997) derivation
of multilayer Green–Naghdi equations and to Choi & Camassa’s (1996) derivation
of two-layer equations for weakly nonlinear internal waves.

3.1. Formulation and non-dimensionalization

Within each layer we write the three-dimensional velocity vector as (ui , wi), where
ui = (ui, vi) is now a two-dimensional vector for the horizontal velocity. Separating
the Euler equations (2.1) into horizontal and vertical components, we obtain

∂ui

∂t
+ (ui · ∇) ui + wi

∂ui

∂z
+ 2Ωzz × ui + 2Ω × ẑwi +

1

ρi

∇pi = 0, (3.1a)

∂wi

∂t
+ ui · ∇wi + wi

∂wi

∂z
+ 2(viΩx − uiΩy) +

1

ρi

∂pi

∂z
+ g = 0, (3.1b)

∇ · ui +
∂wi

∂z
= 0, (3.1c)

for i = 1, . . . , N . The quantities appearing in the three-dimensional Euler equations
are all functions of x, y, z and t .

We assume that each layer of fluid is bounded by an upper surface z = ηi(x, y, t)
and a lower surface z = ηi+1(x, y, t). The exception is the lowest layer, the Nth layer,
that flows over a fixed topography z = ηN+1(x, y). For future use, we also define the
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layer heights hi = ηi − ηi+1, as shown in figure 1. We assume that the upper surface
of the uppermost layer is stress-free, and that the pressure is continuous across each
internal surface. This leads to the following boundary conditions for the pressures:

p1 = 0 on z = η1, pi = pi+1 on z = ηi+1. (3.2)

By considering (D/Dt)(z − ηi) = 0 at z = ηi in each of the two layers bounded by ηi ,
we obtain the kinematic boundary conditions:

wi =
∂η

(−)
i

∂t
+ ui · ∇η

(−)
i on z = η

(−)
i ,

wi =
∂η

(+)
i+1

∂t
+ ui · ∇η

(+)
i+1 on z = η

(+)
i+1.

⎫⎪⎪⎬
⎪⎪⎭ (3.3)

The superscripts (+) and (−) denote that these conditions should be evaluated just
above and just below the boundary, respectively, due to the discontinuity of the
tangential velocity across the interfaces. Compatibility of the different expressions for
∂tηi from each side of the layer is equivalent to continuity of the normal velocity
across each interface.

We now apply a non-dimensionalization similar to that used by Camassa et al.
(1996), but adapted to a rotating system. We write

x = Lx̃, z = εLz̃, ui = U ũi , wi = εUw̃i , pi = 2ΩLUρi p̃i ,

t = L/Ut̃ , Ω = ΩΩ̃ , Ωz = ΩΩ̃z, ηi = εLη̃i ,

}
(3.4)

where U is the velocity scale, L is the length scale, Ω = |(Ω, Ωz)| is the magnitude
of the Earth’s angular velocity and ε � 1 is a small parameter that enforces the
assumption of a shallow layer. We choose the non-dimensionalization for wi so that
the small parameter ε does not enter the dimensionless incompressibility condition.
The dimensionless versions of equations (3.1a)–(3.1c) are thus

Ro

(
∂ ũi

∂ t̃
+
(
ũi · ∇̃

)
ũi + w̃i

∂ ũi

∂z̃

)
+ Ω̃z ẑ × ũi + ε Ω̃ × ẑw̃i + ∇̃p̃i = 0, (3.5a)

ε2Ro

(
∂w̃i

∂ t̃
+ ũi · ∇̃w̃i + w̃i

∂w̃i

∂z̃

)
+ ε(ṽiΩ̃x − ũiΩ̃y) +

∂p̃i

∂z̃
+ Bu = 0, (3.5b)

∇ · ũi +
∂w̃i

∂z̃
= 0, (3.5c)

where Ro = U/(2ΩL) and Bu = gH/(2ΩUL) are the Rossby and Burger numbers,
respectively. We assume Ro and Bu are both O(1). Hereafter we will drop the tilde
(˜) notation, with the understanding that all variables are dimensionless.

3.2. Asymptotic expansion

We wish to obtain averaged momentum equations that are accurate up to first order in
the small parameter ε. We therefore pose asymptotic expansions in ε of the dependent
variables ui , wi and pi ,

ui = u(0)
i + εu(1)

i + · · · , wi = w
(0)
i + εw

(1)
i + · · · , pi = p

(0)
i + εp

(1)
i + · · · , (3.6)

for i = 1, . . . , N.
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Substituting this expansion into (3.5b), we find that the leading-order pressure in
each layer is just the hydrostatic pressure:

p
(0)
i = p

(0)
i

∣∣∣
z=ηi

+ Bu(ηi − z). (3.7)

The leading-order horizontal pressure gradient ∇p
(0)
i is thus independent of z within

each layer. Additionally, non-dimensionalizing (2.2) leads to

Ωz = Ωz0 − ε (∇ · Ω) z, (3.8)

so Ωz is independent of z at leading order. Equation (3.5a) may therefore be satisfied
at leading order by a z-independent horizontal velocity u(0)

i = u(0)
i (x, y, t). In other

words, columnar motion is consistent with the leading-order horizontal momentum
equation.

We now use the vertical momentum equation (3.5b) again to evaluate the first
correction pressure terms:

p
(1)
i = p

(1)
i

∣∣∣
z=ηi

+ (ηi − z)
(
v

(0)
i Ωx − u

(0)
i Ωy

)
. (3.9)

The combination p
(0)
i + εp

(1)
i , being the result of balancing the vertical pressure

gradient with the gravitational term and the vertical components of the Coriolis
acceleration, is known as the ‘quasi-hydrostatic’ pressure (White & Bromley 1995;
White et al. 2005). The pressure contributions from the layers above may be evaluated
using the dimensionless form of the pressure boundary condition (3.2), p

(0)
1 +εp

(1)
1 = 0

on z = η1 and ρi(p
(0)
i + εp

(1)
i ) = ρi−1(p

(0)
i−1 + εp

(1)
i−1) on z = ηi for 2 � i � N . This leads

to the following expression for the pressure in each layer:

pi = p
(0)
i + εp

(1)
i + O(ε2)

= (ηi − z)
(
Bu + εv

(0)
i Ωx − εu

(0)
i Ωy

)

+

i−1∑
j=1

ρj

ρi

hj

(
Bu + εv

(0)
j Ωx − εu

(0)
j Ωy

)
+ O(ε2). (3.10)

Similarly, we may determine the leading-order vertical velocity using (3.5c):

w
(0)
i = w

(0)
i

∣∣∣
z=ηi+1

+ (ηi+1 − z) ∇ · u(0)
i . (3.11)

The vertical velocity in each layer acquires a contribution from those in the layers
below, which may be evaluated using (3.3) in the form

w
(0)
i = w

(0)
i+1 +

(
u(0)

i − u(0)
i+1

)
· ∇ηi+1 on z = ηi+1. (3.12)

Repeated application of (3.11) and (3.12) leads to a complete expression for the
leading-order vertical velocities:

w
(0)
i = ∇ ·

(
ηi+1u(0)

i

)
− z∇ · u(0)

i −
N∑

j=i+1

∇ ·
(
hj u(0)

j

)
. (3.13)

3.3. Averaged momentum equations

We now derive two-dimensional equations governing the dynamics of the depth-
averaged horizontal velocity in each layer. To perform averaging of (3.5a)–(3.5c), we
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require a result from Wu (1981) for the average of the material derivative DF/Dt

across a layer of incompressible fluid bounded by the material surfaces z = ηi and
z = ηi+1,

hi

∫ ηi

ηi+1

{
∂F

∂t
+ ui · ∇F + wi

∂F

∂z

}
dz =

∂

∂t
(hiF ) + ∇ · (hiuiF ). (3.14)

Here an overbar ( ) denotes a layer-averaged quantity. For example,

ui =
1

hi

∫ ηi

ηi+1

ui dz. (3.15)

Setting F =1 in (3.14) leads to an exact evolution equation for the layer height hi:

∂hi

∂t
+ ∇ · (hi ui) = 0. (3.16)

Similarly, setting F = ui and F = vi allows us to integrate (3.5a) over each layer, as
described by Camassa et al. (1996) and Dellar & Salmon (2005), to obtain

Ro

(
∂

∂t
(hiui) + ∇ ·

(
hiui ui

))
+ hi ẑ × Ωzui

+ εΩ × ẑ
∫ ηi

ηi+1

w
(0)
i dz +

∫ ηi

ηi+1

∇
(
p

(0)
i + εp

(1)
i

)
dz = O(ε2). (3.17)

To obtain evolution equations for the averaged velocities ui , we note that ui and Ωz are
z-independent at leading order, and so averages of their products may be factorized to
sufficient accuracy (Camassa et al. 1996; Su & Gardner 1969) as uiui = uiui + O(ε2),
Ωzui = Ωzui + O(ε2). We may also determine the averaged pressure gradient
using (3.10),

∫ ηi

ηi+1

∇
(
p

(0)
i + εp

(1)
i

)
dz = 1

2
εhi

(
v

(0)
i Ωx − u

(0)
i Ωy

)
∇ (ηi+1 + ηi)

+ hi∇
{

Bu ηi + 1
2
εhi

(
v

(0)
i Ωx − u

(0)
i Ωy

)

+

i−1∑
j=1

ρj

ρi

hj

(
Bu + εv

(0)
j Ωx − εu

(0)
j Ωy

)}
, (3.18)

and the averaged vertical velocity using (3.13),

∫ ηi

ηi+1

w
(0)
i dz = hi

[
u(0)

i · ∇ηi+1 − 1
2
hi∇ · u(0)

i −
N∑

j=i+1

∇ ·
(
hj u(0)

j

)]
. (3.19)
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Substituting these expressions into (3.17) yields

Ro

(
∂

∂t
(hiui) + ∇ · (hiuiui)

)
+ hi ẑ × Ωzui + 1

2
εhi

(
v

(0)
i Ωx − u

(0)
i Ωy

)

× ∇ (ηi+1 + ηi) + hi∇
{

Bu ηi + 1
2
εhi

(
v

(0)
i Ωx − u

(0)
i Ωy

)

+

i−1∑
j=1

ρj

ρi

hj

(
Bu + εv

(0)
j Ωx − εu

(0)
j Ωy

)}
+ εΩ

× ẑhi

[
u(0)

i · ∇ηi+1 − 1
2
hi∇ · u(0)

i −
N∑

j=i+1

∇ ·
(
hj u(0)

j

)]
= O(ε2). (3.20)

To complete the derivation, we note that u(0)
i = ui +O(ε) and that the advection terms

may be simplified using (3.16). Additionally, integrating (3.8) yields an expression
for Ωz:

Ωz = Ωz0 − ε zi ∇ · Ω , (3.21)

where zi = (1/2) (ηi + ηi+1) is the vertical position of the midsurface of the layer. The
linear dependence of Ωz on z makes the average of Ωz across the layer equal to the
value of Ωz at the midsurface.

Neglecting terms of O(ε2) and above, and dropping the overbars on averaged
velocities, we rearrange (3.20) to obtain

Ro

(
∂ui

∂t
+ (ui · ∇)ui

)
+

(
Ωz0 − 1

2
ε∇ ·

(
(ηi + ηi+1) Ω

))
ẑ × ui

+ ∇
{

Bu ηi + 1
2
εhi(viΩx − uiΩy) +

1

ρi

i−1∑
j=1

ρjhj

(
Bu + ε

(
vjΩx − ujΩy

) )}

− ε Ω × ẑ ∇ ·
[

1
2
hiui +

N∑
j=i+1

hj uj

]
= 0. (3.22)

We thus obtain shallow water momentum equations governing the averaged horizontal
fluid velocities and layer heights. We may recover the traditional multilayer shallow
water equations by setting Ωx =Ωy =0, or equivalently by letting ε tend to zero. The
terms proportional to Ωx and Ωy are the corrections to the traditional shallow water
equations that arise from the non-traditional components of the Coriolis force.

The final term in (3.22) may be rewritten as a time derivative using the continuity
equations for the layer heights:

−Ω × ẑ ∇ ·
[

1
2
hiui +

N∑
j=i+1

hj uj

]
=

∂

∂t

[
Ω × ẑ

(
1
2
hi +

N∑
j=i+1

hj

)]
=

∂

∂t
(Ω × ẑ zi) ,

(3.23)

where zi(x, y, t) is the vertical coordinate of the midsurface of the ith layer. This
term combines with the time derivative of the velocity to form the time derivative
of what turns out to be the canonical momentum as shown in § 5.2. Similarly, the
quantity whose gradient appears in ∇{ · } is the pressure, given by (3.10), evaluated at
the midsurface zi .
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4. Derivation from a variational principle
We may also derive our extended shallow water equations (3.22) and (3.16) from
the application of Hamilton’s principle of least action. Hamilton’s principle gives the
equations of motion for a mechanical system as being those that make the action

S =

∫ t1

t0

L dt (4.1)

stationary over variations that vanish at the endpoints t0 and t1. For example,
the three-dimensional Euler equations for an incompressible, inviscid fluid may be
obtained from Hamilton’s principle and the Lagrangian (Eckart 1960b)

L =

∫∫∫
da db dc

1

2

∣∣∣∣∂x
∂τ

∣∣∣∣
2

− p(a, τ )

(
∂(x, y, z)

∂(a, b, c)
− 1

ρ0

)
. (4.2)

In this formulation, the most natural extension of Lagrange’s formulation of particle
mechanics (as in Goldstein 1980) to hydrodynamics, fluid elements are described by
their positions x(a, τ ) as functions of a set of labels a and time τ . We have returned
to using x and a to denote three-dimensional vectors. A detailed description is given
in the next subsection. The first term in (4.2) is identifiable as the kinetic energy
of a fluid element. The second term introduces a Lagrange multiplier p(a, τ ) to
enforce incompressibility, expressed using the Jacobian of the label-to-particle map
and a reference density ρ0. By restricting the dependence of x on a so as to enforce
columnar motion, one may derive various two-dimensional Lagrangians that lead to
shallow water equations (Salmon 1982b, 1988; Miles & Salmon 1985).

4.1. Particle labels

Within each layer we let the positions of the fluid elements be x, which we treat as
functions of some particle labels ai =(ai, bi, ci) and time τ . In the ith layer, x denotes
the position at time τ of the particle whose label is ai . To clarify, we write

x = xi = (xi(ai , τ ), yi(ai , τ ), zi(ai , τ )), (4.3)

to reflect the dependence of x on the particle labels in each layer. We use τ for time
to emphasize that ∂/∂τ means a partial derivative at fixed labels ai rather than at
fixed position xi . Thus ∂/∂τ = ∂/∂t + ui · ∇ corresponds to an advective or material
derivative with the velocity field defined by ui(xi , τ ) = ∂xi/∂τ .

We choose the particle labels ai to be mass-weighted coordinates that satisfy

dai dbi dci = ρi dxi dyi dzi , (4.4)

for i =1, . . . , N . This means that the density and velocity may both be expressed in
terms of the label-to-particle map xi(ai , τ ). Varying this map induces coordinated
variations of the density and velocity, which is what distinguishes the variational
principle for a fluid from the variational principle for a cloud of non-interacting
particles. In particular, the density within each layer is related to the Jacobian of the
map by

∂(xi, yi, zi)

∂(ai, bi, ci)
=

1

ρi

. (4.5)

Differentiating this relation with respect to τ leads to the incompressibility condition
(3.1c), as in Miles & Salmon (1985). Thus, the continuity equation (kinematics) is
incorporated in the label-to-particle map, while the momentum equation (dynamics)
will come from Hamilton’s principle.
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4.2. Formulation of the multilayer Lagrangian

We formulate a Lagrangian for the multilayered system from the kinetic energies Ti ,
potential energies Ui and pressure constraints Pi in each layer:

L =

N∑
i=1

Ti − Ui + Pi ,

=

N∑
i=1

∫∫∫
dai dbi dci

{
1
2

∣∣∣∣∂xi

∂τ
+ R

∣∣∣∣
2

− 1
2

|R|2 − gzi + pi(ai , τ )

×
(

∂(xi, yi, zi)

∂(ai, bi, ci)
− 1

ρi

)}
. (4.6)

The R terms arise from the Coriolis and centrifugal forces in a rotating frame, and
gzi is the gravitational potential energy.

The Coriolis force is mathematically identical to the Lorentz force experienced by
a charged particle in a magnetic field. We may therefore include the Coriolis force in
Hamilton’s principle by introducing a vector potential R such that

∇ × R = 2 Ω. (4.7)

Here R = (Rx, Ry, Rz) and Ω = (Ωx, Ωy, Ωz) are both three-dimensional vectors. The
R notation was introduced by Holm, Marsden & Ratiu (1986), by analogy with
the introduction of a vector potential A for the magnetic field B = ∇ × A when
formulating the Lagrangian for a charged particle in a magnetic field (e.g. Goldstein
1980). However, various special cases for particular forms of Ω appeared earlier
(e.g. Salmon 1982b, 1983). Pursuing the analogy with magnetic fields, ∇ × R is left
unchanged by the gauge transformations R → R + ∇ϕ, which gives us some freedom
in our choice of R. Although R appears explicitly in the Lagrangian (4.6), the
contribution from ∇ϕ to the Lagrangian reduces to a surface integral, which is readily
shown to vanish at rigid boundaries. In addition, Dellar & Salmon (2005) showed
that the integral over a free surface may be transformed into an exact time derivative,
which gives no contribution to the action defined by (4.1). If Ω is spatially uniform,
R = Ω × x is a suitable vector potential. The combination (1/2) |∂xi/∂τ + R|2 in (4.6)
then corresponds to the kinetic energy calculated in an inertial frame. The −(1/2) |R|2
term in (4.6) subtracts out the effect of the centrifugal force, which we take to have
been included in the gravitational acceleration, as explained in the Introduction.

More generally, our assumption that Ωx and Ωy are independent of z allows us to
find a suitable R by imposing Rz = 0. We may then integrate the x and y components
of (4.7) to obtain

R = 2
(
F (x, y) + z Ωy, G(x, y) − z Ωx, 0

)
, (4.8)

where F and G are arbitrary functions arising from the integration of Rx and Ry

with respect to z. We obtain a relation between F and G by substituting (4.8) and
(2.2) for Ωz into the z component of (4.7):

∂G

∂x
− ∂F

∂y
= Ωz0(x, y). (4.9)

This construction involving F and G is identical to that used under the traditional
approximation by Salmon (1982b, 1983). The remaining arbitrariness in F and G is
a consequence of being to make gauge transformations in R as described above.
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4.3. Dimensionless variables

As before, we introduce dimensionless variables using (3.4), and also

F = ΩLF̃ , G = ΩLG̃, τ = L/Uτ̃ , L =
L̃

2ρ1εL4ΩU
. (4.10)

We also introduce the dimensionless particle labels defined by

ai = ρ
1/3
i Lãi , bi = ρ

1/3
i Lb̃i , ci = ρ

1/3
i εLc̃i , (4.11)

so that the incompressibility condition (4.5) becomes

∂(x̃i , ỹi , z̃i)

∂(ãi , b̃i , c̃i)
= 1. (4.12)

Here ε � 1 is introduced again to enforce the assumption that the layers of fluid are
shallow.

We thus obtain the dimensionless Lagrangian

L̃ =

N∑
i=1

ρi

ρ1

∫∫∫
dãi db̃i dc̃i

{
1
2
Ro

((
∂x̃i

∂τ̃

)2

+

(
∂ỹi

∂τ̃

)2

+ ε2

(
∂z̃i

∂τ̃

)2
)

− Bu z̃i + ε

(
∂x̃i

∂τ̃
Ω̃y − ∂ỹi

∂τ̃
Ω̃x

)
z̃i +

(
∂x̃i

∂τ̃
F̃ +

∂ỹi

∂τ̃
G̃

)

+ p̃i(ãi , τ )

(
∂(x̃i , ỹi , z̃i)

∂(ãi , b̃i , c̃i)
− 1

)}
. (4.13)

We now drop the tilde ˜ notation, with the understanding that all variables used
henceforth are dimensionless.

4.4. Restriction to columnar motion

In § 3, we demonstrated that z-independent horizontal velocity satisfies the governing
equations at leading order in ε. We will therefore follow Salmon (1983, 1988) and
Miles & Salmon (1985) and restrict the fluid to columnar motion by assuming that
xi = xi(ai, bi, τ ) and yi = yi(ai, bi, τ ) are independent of the vertical particle label ci .
Equation (4.12) then simplifies to

∂zi

∂ci

=
∂(ai, bi)

∂(xi, yi)
. (4.14)

Choosing ci = 0 at the bottom of each layer, and ci =1 at the top, we may integrate
(4.14) with respect to ci to determine zi:

zi = hici + ηi+1. (4.15)

This defines hi as the reciprocal of the Jacobian of the horizontal particle positions
and labels:

hi =

(
∂(ai, bi)

∂(xi, yi)

)−1

. (4.16)

We write the expression this way to emphasize that hi is more naturally treated as
a function of the particle labels ai and bi , rather than the particle positions xi and
yi . Differentiating hi(ai, bi, τ ) with respect to τ leads to the layer-averaged continuity
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equation (3.16), as in Miles & Salmon (1985). Substituting (4.16) into (4.15) gives

zi = hici + ηi+1 = hici + B +

N∑
j=i+1

hj = hici + B +

N∑
j=i+1

∂(aj , bj )

∂(xj , yj )
. (4.17)

The vertical coordinate in each layer therefore acquires a dependence on the particle
labels in all of the layers below. It is this dependence that allows each layer to respond
to the motion of the layers above and below it.

Substituting these expressions into the Lagrangian (4.13), we obtain

L =

N∑
i=1

ρi

ρ1

∫∫
dai dbi

∫ 1

0

dci

{
1
2
Ro

(
∂xi

∂τ

)2

+ 1
2
Ro

(
∂yi

∂τ

)2

+

(
∂xi

∂τ
F +

∂yi

∂τ
G

)
−
(

Bu + ε
∂yi

∂τ
Ωx − ε

∂xi

∂τ
Ωy

)
(hici + ηi+1)

}
. (4.18)

The pressure terms involving the Lagrange multipliers p̃i(ãi , τ ) have been discarded
because our ci to zi map has been explicitly constructed to enforce incompressibility.
We have also discarded terms O(ε2) and above, as in § 3, so we have also dropped
the term (∂zi/∂τ )2 from (4.13) to obtain (4.18). Miles & Salmon (1985) showed that
retaining this term would lead to a multilayer analogue of the equations derived by
Green & Naghdi (1976) using Cosserat surfaces.

We may now complete the integration over ci in (4.18) to obtain the two-dimensional
‘shallow water’ Lagrangian

L =

N∑
i=1

ρi

ρ1

∫∫
dai dbi

{
1
2
Ro

(
∂xi

∂τ

)2

+ 1
2
Ro

(
∂yi

∂τ

)2

+

(
∂xi

∂τ
F +

∂yi

∂τ
G

)

−
(

Bu + ε
∂yi

∂τ
Ωx − ε

∂xi

∂τ
Ωy

)(
1
2
hi + ηi+1

)}
. (4.19)

The integration over ci leads to the appearance of ((1/2) hi + ηi+1) in the last term
in the integrand. Because zi depends linearly on ci through (4.17), the average of any
quantity that varies linearly in zi across a layer is equal to the quantity evaluated at
the midpoint of the layer.

4.5. Derivation of momentum equations

The most straightforward route to the shallow water equations is to require that
the variations of L with respect to xi(ai , τ ) vanish, in accordance with Hamilton’s
principle of least action. Having integrated over the third direction, we now return
to two-dimensional vector notation and set xi = (xi, yi) and ai = (ai, bi). We first note
that we may transform between integrals over particle labels daj dbj and dai dbi using
(4.16) in the form∫∫

daj dbj A =

∫∫
dxj dyj hjA =

∫∫
dxi dyi hjA =

∫∫
dai dbi

hjA

hi

, (4.20)

for any A and j �= i. We see that when varying xi(ai , τ ), we must transform all
integrals daj dbj to determine their contribution to the variation. We therefore apply
(4.20) to transform the Lagrangian in (4.19) into an integral over the labels in the ith
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layer:

L =

∫∫
dai dbi

N∑
j=1

ρjhj

ρ1hi

{
1
2
Ro

(
∂xj

∂τ

)2

+ 1
2
Ro

(
∂yj

∂τ

)2

+

(
∂xj

∂τ
F +

∂yj

∂τ
G

)

−
(

Bu + ε
∂yj

∂τ
Ωx − ε

∂xj

∂τ
Ωy

)(
1
2
hj + B +

N∑
k=j+1

hk

)}
. (4.21)

A more explicit approach to the transformation of integrals between layers was used
by Salmon (1982b) and is described briefly in the Appendix. A different approach
that avoids this technicality completely is described in § 4.6.

When taking variations of xi , we assume that ∂xj /∂τ and hj for all j �= i are
prescribed functions of x evaluated at xi . For this we use the (non-varying) label-
to-particle maps in the layers j �= i, and their inverses. Similarly, B , F, G, Ωx and
Ωy are all treated as prescribed functions of x evaluated at xi . The variation of any
prescribed function A(x) with respect to xi is (Miles & Salmon 1985)

δA = ∇A · δxi . (4.22)

To resolve the implicit dependence of hi on xi , we rewrite (4.16) as

hi

∂(xi, yi)

∂(ai, bi)
= 1, (4.23)

and take variations

0 = δ

(
hi

∂(xi, yi)

∂(ai, bi)

)
= δhi

∂(xi, yi)

∂(ai, bi)
+ hi

∂(δxi, yi)

∂(ai, bi)
+ hi

∂(xi, δyi)

∂(ai, bi)

=
δhi

hi

+ hi

∂(xi, yi)

∂(ai, bi)

[
∂(δxi, yi)

∂(xi, yi)
+

∂(xi, δyi)

∂(xi, xi)

]

=
δhi

hi

+
∂δxi

∂xi

+
∂δyi

∂yi

, (4.24)

to obtain (Miles & Salmon 1985)

δhi = −hi∇ · δxi . (4.25)

For an arbitrary quantity Q multiplying the variation δhi , we obtain (Miles &
Salmon 1985)∫∫

dai dbi Qδhi = −
∫∫

dai dbi Qhi ∇ · δxi =

∫∫
dai dbi

1

hi

∇
(
h2

i Q
)

· δxi . (4.26)

The second step follows from a transformation to an integral with respect to dx dy,
integration by parts, and then a transformation back to an integral in dai dbi .

We now show that the majority of the terms in the integrand in (4.21) make no
contribution when we vary xi . For any prescribed function A(x), the variation of the
functional LA defined by

LA =

∫∫
dai dbi

A

hi

(4.27)
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is given by

δLA =

∫∫
dai dbi

1

hi

δA − A

h2
i

δhi =

∫∫
dai dbi

1

hi

∇A · δxi − 1

hi

∇
(

h2
i A

h2
i

)
· δxi = 0.

(4.28)

As we treat ∂xj /∂τ and hj as prescribed functions of x when varying xi with i �= j ,
many of the terms in (4.21) are of the form (4.28), and therefore make no contribution
under variations of xi . Thus, when we take variations of L with respect to xi , we
may drop all such terms, leaving

δ

∫
dτL = δ

∫
dτ

∫∫
dai dbi

ρi

ρ1

{
−

i−1∑
j=1

ρj

ρi

hj

(
Bu + ε

∂yj

∂τ
Ωx − ε

∂xj

∂τ
Ωy

)

+ 1
2
Ro

(
∂xi

∂τ

)2

+ 1
2
Ro

(
∂yi

∂τ

)2

+

(
∂xi

∂τ
F +

∂yi

∂τ
G

)

−
(

Bu + ε
∂yi

∂τ
Ωx − ε

∂xi

∂τ
Ωy

)(
1
2
hi + ηi+1

)}
. (4.29)

Thus, we are essentially taking variations of the Lagrangian for a single layer of
shallow water flowing over a prescribed lower surface ηi+1(x, t), as in Dellar &
Salmon (2005), but with additional contributions due to the pressure inherited from
each of the layers above (3.10).

Using (4.22) and (4.26) to compute the variation of (4.19) with respect to xi

gives

δ

∫
dτL =

∫
dτ

∫∫
dai dbi

ρi

ρ1

{
−Ro

∂2xi

∂τ 2
− Bu ∇ηi

− ∇
[

i−1∑
j=1

ρj

ρi

hj

(
Bu + ε

∂yj

∂τ
Ωx − ε

∂xj

∂τ
Ωy

)]

+
∂xi

∂τ
∇Fi +

∂yi

∂τ
∇Gi − ∂

∂τ
(Fi, Gi)

+ ε
(

1
2
hi + ηi+1

)(∂xi

∂τ
∇Ωy − ∂yi

∂τ
∇Ωx

)

+ ε

(
∂xi

∂τ
Ωy − ∂yi

∂τ
Ωx

)
∇
(

1
2
hi + ηi+1

)
+ ε

∂

∂τ

((
1
2
hi + ηi+1

) (
−Ωy, Ωx

))
+ 1

2
ε ∇
[
hi

(
∂xi

∂τ
Ωy − ∂yi

∂τ
Ωx

)]}
· δxi , (4.30)

for i = 1, . . . , N . Rewriting the material time derivatives as ∂/∂τ = ∂/∂t + ui · ∇, the
terms involving Fi and Gi combine to give

ui∇Fi + vi∇Gi − (ui · ∇Fi, ui · ∇Gi) = (Gix − Fiy)(vi, −ui), (4.31)

and Gix − Fiy = Ωz0 using (4.9). Hamilton’s principle, setting the integrand of (4.30)
equal to zero, thus gives the same equations of motion (3.22) as before.
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4.6. Alternative formulation using a separate Lagrangian for each layer

In the previous approach, the different layers were coupled together through the
label-to-particle map. The map from the label ci to the vertical position zi depended
upon the heights of every layer underneath. Varying the map from ci to zi would
raise or lower every layer above, and thus change these layers’ contributions to the
gravitational potential energy. This is the natural way to include the pressure exerted
by the layers above, but taking variations is complicated by the need to transform
integrals over the upper layers into integrals with respect to ai , bi , ci .

In this section, we describe a different derivation that uses a separate Lagrangian
Li for each layer of fluid. The label-to-particle map in each layer may be varied
independently, making the derivation of the equations of motion much simpler. In
particular, this approach would be much more attractive for deriving multilayer
analogues of the Green & Naghdi (1976) equations that retain the vertical kinetic
energy (1/2)ż2

i in each layer.
We begin with a three-dimensional Lagrangian, as before, and decompose it into

the sum of contributions from each of the different layers. This leads to a Lagrangian
for the multilayer system that is the sum of separate Lagrangians for each layer.
The layers are coupled through an additional term representing the work done by
the pressure in the layers above, analogous to the treatment of external pressure by
Miles & Salmon (1985).

Returning to three-dimensional notation, we may formulate a Lagrangian for the
ith layer as

Li = Ti − Ui + Pi + Wi , (4.32)

where Ti and Ui are the kinetic and potential energies given in (4.6), and Pi is a
incompressibility constraint that contains the pressure pi as a Lagrange multiplier
pi . So far this is exactly the same as in Eckart (1960b) and § 4.2 above. The extra
contribution Wi is the work done on the upper surface of each layer by the layers
above:

Wi =

∫∫∫
dai dbi dci

{
− 1

ρi

Pi(xi, yi, τ )
}

, (4.33)

treated analogously to the imposed external pressure on a single fluid layer by Miles &
Salmon (1985). Thus, Pi(xi, yi, τ ) is the pressure exerted on layer i by the layers above.

We may therefore write the complete three-dimensional Lagrangian as

Li =

∫∫∫
dai dbi dci

{
1
2

∣∣∣∣∂xi

∂τ
+ R

∣∣∣∣
2

− 1
2

|R|2 − gzi

+ pi(ai , τ )

(
∂(xi, yi, zi)

∂(ai, bi, ci)
− 1

ρi

)
− 1

ρi

Pi(xi , τ )

}
. (4.34)

Taking variations of (4.34) with respect to xi , yi zi and pi , and invoking Hamilton’s
principle of least action, we recover (3.1a), (3.1b) and (4.5), respectively. In (3.1a), pi

is replaced by pi + Pi and the pressure boundary condition is modified to pi = 0 on
z = ηi . The inclusion of Pi thereby accounts for the pressure imposed in layer i by
the fluid in the layers above.
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We now apply the non-dimensionalizations in (3.4), (4.10) and (4.11) to the
Lagrangian in (4.34), dropping the tilde (˜) notation for dimensionless variables:

Li =

∫∫∫
dai dbi dci

{
1
2
Ro

(
∂xi

∂τ

)2

+ 1
2
Ro

(
∂yi

∂τ

)2

− Bu zi + ε

(
∂xi

∂τ
Ωy − ∂yi

∂τ
Ωx

)
zi +

(
∂xi

∂τ
F +

∂yi

∂τ
G

)

+ pi(ai , τ )

(
∂(xi, yi)

∂(ai, bi)

∂zi

∂ci

− 1

)
− Pi(xi, yi, τ )

}
. (4.35)

Here we have introduced the shallow water assumptions, restricting xi and yi to
be independent of ci , and neglecting terms of O(ε2). To determine Pi(xi, yi, τ ), the
unknown pressures exerted on the upper surface of each layer, we consider variations
of (4.35) with respect to zi alone:

δ

∫
dτLi =

∫
dτ

∫∫∫
dai dbi dci

{
−Bu − ∂(xi, yi)

∂(ai, bi)

∂pi

∂ci

− ε

(
∂yi

∂τ
Ωx − ∂xi

∂τ
Ωy

)}
δzi .

(4.36)

Hamilton’s principle states that leading-order variations of the action with respect to
zi must vanish, so it follows that the integrand in (4.36) must be uniformly equal to
zero. Using (4.16) to evaluate the Jacobian multiplying ∂pi/∂ci , this yields

∂pi

∂ci

= hi

(
Bu + ε viΩx − ε uiΩy

)
. (4.37)

This is equivalent to what White & Bromley (1995) call quasi-hydrostatic balance
in the vertical momentum equation. We may thus determine pi by integrating with
respect to ci:

pi = pi |ci=1 + (1 − ci)hi

(
Bu + ε viΩx − ε uiΩy

)
. (4.38)

The Lagrangian pressure boundary condition is

ρipi

∣∣∣
ci=1

= ρi−1pi−1

∣∣∣
ci−1=0

, (4.39)

which corresponds to continuity of the dimensional pressure at the interface. We let
P1 = 0, corresponding to the stress-free boundary condition on the upper surface of
the top layer, and let

Pi =
ρi−1

ρi

pi−1

∣∣∣
ci=1

=

i−1∑
j=1

ρj

ρi

Pj =

i−1∑
j=1

ρj

ρi

hj

(
Bu + ε vjΩx − ε ujΩy

)
, (4.40)

for i = 2, . . . , N . This expression for the pressure acting on the upper surface of each
layer is the same as the expression calculated by layer averaging in (3.10).

We now simplify (4.35) using the assumption of columnar motion, as in § 4.2. The
definitions (4.15) and (4.16) mean that (4.5) is satisfied automatically, so we may drop
the terms multiplied by pi in the Lagrangian. We may then integrate with respect to



404 A. L. Stewart and P. J. Dellar

ci by substituting in (4.15), leading to a two-dimensional ‘shallow water’ Lagrangian:

Li =

∫∫
dai dbi

∫ 1

0

dci

{
1
2
Ro

(
∂xi

∂τ

)2

+ 1
2
Ro

(
∂yi

∂τ

)2

− Pi

−
(

Bu + ε
∂yi

∂τ
Ωx − ε

∂xi

∂τ
Ωy

)
(hici + ηi+1) +

(
∂xi

∂τ
F +

∂yi

∂τ
G

)}

=

∫∫
dai dbi

{
1
2
Ro

(
∂xi

∂τ

)2

+ 1
2
Ro

(
∂yi

∂τ

)2

− Bu
(

1
2
hi + ηi+1

)
− Pi

+ ε

(
∂xi

∂τ
Ωy − ∂yi

∂τ
Ωx

)(
1
2
hi + ηi+1

)
+

(
∂xi

∂τ
F +

∂yi

∂τ
G

)}
. (4.41)

Thus, we recover the effective Lagrangian (4.29) used to take variations with respect
to xi in § 4.5.

5. Conservation properties
We now show that our non-traditional multilayer shallow water equations inherit
the expected conservation laws for energy, momentum and potential vorticity from
the underlying three-dimensional equations. The existence of these conservation laws
is guaranteed by our variational formulation in § 4, and Noether’s theorem that
relates symmetries in a variational principle to conservation laws (e.g. Goldstein
1980). Conservation of energy and momentum is a consequence of symmetries under
translations in time and space, while material conservation of potential vorticity
follows from a more subtle symmetry under relabelling of the particles (Ripa 1981;
Salmon 1982a , 1988, 1998).

5.1. Energy conservation

An equation expressing conservation of energy may be obtained either by
manipulating the extended shallow water equations (3.22) or by a Legendre
transformation of the Lagrangian (4.19). The latter approach corresponds to finding
the quantity that is conserved under time translation, as required by Noether’s
theorem (e.g. Goldstein 1980; Salmon 1998) because the Lagrangian does not depend
explicitly upon τ . We present the energy conservation law in dimensional form for
ease of interpretation:

∂

∂t

{
N∑

i=1

1
2
ρihi |ui |2 + 1

2
ρighi (ηi + ηi+1)

}

+ ∇ ·
{

N∑
i=1

hiui

(
1
2
ρi |ui |2 + ρigηi + ρihi

(
viΩx − uiΩy

)

+

i−1∑
j=1

ρjghj + 2ρjhj

(
vjΩx − ujΩy

))}
= 0. (5.1)

As usual, the energy density is unaffected by the Coriolis force, and is simply the
sum of the integrals of the three-dimensional energy density (1/2) ρi |ui |2 + ρigz over
each layer. However, the energy flux differs from the standard shallow water form by
terms proportional to Ωx and Ωy . These extra terms represent the work done by the
quasi-hydrostatic (as opposed to purely hydrostatic) pressure.
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5.2. Canonical momenta

The canonical momenta are best considered using the standard axes of geophysical
fluid dynamics. We take the x axis pointing East, and the y axis pointing North, so
that Ωx = 0, Ωy = Ωy(y) and Ωz0 = Ωz0(y). We first turn our attention to the zonal
momentum, which we expect to be conserved when the Lagrangian contains no
explicit dependence on x. We therefore choose G =0 and F (y) = −

∫
Ωz0(y) dy, as in

Salmon (1982b). We also assume a zonally symmetric topography ηN+1(y) with no x

dependence. The shallow water Lagrangian (4.19) then becomes

L =

N∑
i=1

ρi

ρ1

∫∫
dai dbi

{
1
2
Ro |ẋi |2 + ẋiF +

(
εẋiΩy − Bu

) (
1
2
hi + ηi+1

)}
, (5.2)

where ẋi = (ẋi , ẏi) = (∂x/∂τ, ∂y/∂τ ). The canonical momenta in the x direction are
given by

pix =
δL
δẋi

= Ro ui + F + ε Ωy

(
1
2
hi + ηi+1

)
. (5.3)

We do not expect any individual canonical momentum pix to be conserved. When we
take variations with respect to xi , the xj and hj in the other layers (j �= i) are treated
as prescribed functions of xi , so there is no symmetry associated with translations
in xi alone. In other words, the form drag due to tilted interfaces between layers
transfers momentum between layers.

However, there is a symmetry if we translate all of the xi simultaneously by the
same amount, letting xi → xi + δx with the same variation δx for each i = 1, . . . , N .
The resulting variation of the Lagrangian (5.2) is

δ

∫
dτL =

∫
dτ

N∑
i=1

ρi

ρ1

∫∫
dai dbi

{(
Ro ẋi + F + ε Ωy

(
1
2
hi + ηi+1

)) ∂(δx)

∂τ

+
(
εẋiΩy − Bu

)(
1
2
δhi +

N∑
j=i+1

δhj

)}
. (5.4)

Using δhi = −hi∂(δx)/∂x for variations in xi , we find that∫∫
dai dbi A δhj = −

∫∫
dai dbi Ahj

∂(δx)

∂x
=

∫∫
dai dbi

1

hi

∂

∂x

(
hihjA

)
δx (5.5)

for an arbitrary function A and any i and j . This result is very similar to (4.26),
in that the second equality follows from a transformation to an integral over dx dy,
integration by parts, and then transformation back to an integral over dai dbi . It
allows us to simplify (5.4) into

δ

∫
dτL =

∫∫
da1 db1

∫
dτ

N∑
i=1

ρi

ρ1

hi

h1

{
− ∂

∂τi

(
Ro ẋi + F + ε Ωy

(
1
2
hi + ηi+1

))

+
1

hi

∂

∂x

[
hi

(
εẋiΩy − Bu

)(
1
2
hi +

N∑
j=i+1

hj

)]}
δx, (5.6)

where we have used (4.20) to transform each of the integrals dai dbi for i =2, . . . , N

into an integral da1 db1. We write ∂/∂τi = ∂/∂t + ui · ∇ for the material time derivative
in layer i.
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By Hamilton’s principle of least action, the integrand in (5.6) must be equal to zero.
Redimensionalizing and using (3.16), we obtain the momentum conservation equation

∂

∂t

(
N∑

i=1

ρihipix

)
+ ∇ ·

{
ρihipixui + ρihi

(
g − 2Ωyui

)(
1
2
hi +

N∑
j=i+1

hj

)
x̂

}
= 0.

(5.7)
Thus, the conserved total zonal momentum is a weighted sum of the canonical
momenta over the layers.

If Ωy , Ωz0 and ηN+1 are all constants, we may find a similar conservation law
for the meridional momentum by choosing F = 0 and G = xΩz0. The shallow water
Lagrangian now takes the form

L =

N∑
i=1

ρi

ρ1

∫∫
dai dbi

{
1
2
Ro |ẋi |2 + ẏiG +

(
εẋiΩy − Bu

) (
1
2
hi + ηi+1

)}
, (5.8)

and the canonical y momenta are now given by

piy =
δL
δẏi

= Ro vi + xΩz0. (5.9)

We thus obtain a conservation law for the y momentum by a process similar to that
described above:

∂

∂t

(
N∑

i=1

ρihipiy

)
+ ∇ ·

{
ρihipiyui + ρihi

(
g − 2Ωyui

)(
1
2
hi +

N∑
j=i+1

hj

)
ŷ

}
= 0.

(5.10)
There is no one choice for F and G that allows us to express conservation of x and y

momentum simultaneously, but there are two conserved components of momentum
when the rotation vector and the bottom topography are constants. On a beta-plane,
for example, we would not expect a conserved meridional momentum because Ωz

depends explicitly on latitude y. We also see that the conserved zonal momentum
contains terms proportional to Ωy , whilst the conserved meridional momentum does
not depend upon Ωy . This is because in these standard axes the non-traditional
components of the Coriolis force act vertically and zonally, but not meridionally; see
(3.1a)–(3.1c).

5.3. Potential vorticity

Material conservation of potential vorticity is even more important in geophysical fluid
dynamics than conservation of energy and momentum. Both energy and momentum
may be transported over large distances by waves, while potential vorticity remains
tied to fluid particles. Each layer of our equations possesses a potential vorticity qi

that obeys the conservation law ∂tqi + ui · ∇qi = 0, with

qi =
1

hi

{[
Ωz0 − 1

2
ε∇ · ((ηi + ηi+1) Ω)

]
+ Ro

(
∂vi

∂x
− ∂ui

∂y

)}
. (5.11)

This expression for qi differs from the standard shallow water potential vorticity by
the term −(1/2) ε∇ · ((ηi + ηi+1)Ω) that contains the horizontal components Ωx and
Ωy of the rotation vector. Equivalently, if we expand the divergence into two terms,
we obtain

Ωz0 − zi∇ · Ω − Ω · ∇zi = Ωz − Ω · ∇zi = (Ω, Ωz) · ∇(z − zi(x, y, t)), (5.12)
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where zi = (1/2)(ηi + ηi+1) is the z coordinate of the midsurface of the ith layer.
The non-traditional effects therefore replace the vertical component of rotation
vector, as found in the standard shallow water potential vorticity, by the component
perpendicular to the layer’s midsurface z = zi(x, y, t).

The potential vorticity conservation law with the expression (5.11) for qi may be
obtained from the curl of (3.22), or we may find qi directly from the canonical
momenta. The particle relabelling symmetry (e.g. Ripa 1981; Salmon 1982a , 1988,
1998) implies material conservation of

qi =
1

hi

(
∂piy

∂xi

− ∂pix

∂yi

)
(5.13)

for any Lagrangian that depends on the particle labels ai and bi only through the
height hi formed from the Jacobian ∂(xi, yi)/∂(ai, bi). Moreover, the combination of
pix and piy appearing in qi is invariant under changes of gauge in R, i.e. it is the
same for all possible choices of F and G, even though pix and piy themselves are
gauge dependent.

6. Non-canonical Hamiltonian structure
Our equations may also be expressed using the non-canonical Hamiltonian structure
for multilayered shallow water equations formulated by Ripa (1993). The non-
canonical Hamiltonian formalism is convenient for fluid systems expressed using
Eulerian (space-fixed) variables, as described by Shepherd (1990), Morrison (1998)
and Salmon (1988, 1998). It specifies the evolution of any functional F as being given
by Ft = {F, H} in terms of a Hamiltonian functional H, and a Poisson bracket
{· , · } that satisfies certain geometrical properties.

Using dimensional variables for simplicity and writing the fluid velocity as ui =
(uix, uiy), the evolution of the density-weighted canonical momenta

vix = ρipix = ρi

(
uix + F + 2Ωy

(
1
2
hi + ηi+1

))
, viy = ρipiy = ρiuiy, (6.1)

and the layer depth hi under our non-traditional multilayer shallow water equations
is given by

∂

∂t

⎛
⎜⎝

vix

viy

hi

⎞
⎟⎠ = −

⎛
⎜⎝

0 −ρiqi ∂x

ρiqi 0 ∂y

∂x ∂y 0

⎞
⎟⎠
⎛
⎜⎝

δH/δvix

δH/δviy

δH/δhi

⎞
⎟⎠ . (6.2)

The Hamiltonian is the energy density from § 5.1, but expressed in terms of vix , viy

and hi:

H =

N∑
k=1

hk

2ρk

{[
vkx − ρk

(
F + 2Ωy

(
1
2
hk + ηk+1

))]2
+ v2

ky

}
+ gρkhk

(
1
2
hk + ηk+1

)
.

(6.3)
Calculation of the variational derivative δH/δhi is complicated by the hidden
dependence of ηk on hk, . . . , hN through the relation

ηk = ηN+1 +

N∑
j=k

hj , (6.4)

where ηN+1(x, y) is the fixed bottom topography. The calculations are essentially the
same as those computing the variation in the potential energy part of the Lagrangian
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in § 4. The combination (1/2) hk + ηk+1 appearing in (6.3) is the midpoint of layer k,
denoted h̃k by Ripa (1993).

All the coupling between layers is thus expressed through the Hamiltonian. The
Poisson bracket that generates (6.2) may be written as a sum of standard shallow
water Poisson brackets (e.g. Shepherd 1990) for each layer, as done by Ripa (1993),

{F, G} =

N∑
i=1

∫∫
dx dy ρiqi ẑ ·

(
δF

δvi

× δG

δvi

)
+

δG

δhi

∇ ·
(

δF

δvi

)
− δF

δhi

∇ ·
(

δG

δvi

)
.

(6.5)
This definition holds for any functionals F and G satisfying suitable boundary
conditions that allow integrations by parts in (6.5) without generating surface terms.
The Poisson bracket may be shown to be bilinear, antisymmetric and to satisfy the
Jacobi identity {F, {G, K}} + {G, {K, F}} + {K, {F, G}} =0 for all functionals
F, G and K. Equation (6.2) then follows from (6.5) and the evolution equation
Ft = {F, H} by setting F equal to vix , viy and hi in turn. Conservation laws like
those listed in § 5 may be derived from properties of the Poisson bracket, especially the
existence of so-called Casimir functionals C that satisfy {C, F} =0 for all functionals
F. A full description is given by Ripa (1993) and in survey articles by Shepherd
(1990), Morrison (1998) and Salmon (1988, 1998).

7. Conclusion
We have derived multilayer shallow water equations that include a complete treatment
of the Coriolis force, thus extending the single-layer equations of Dellar & Salmon
(2005) to multiple layers. We have presented a derivation of our equations by direct
averaging of the three-dimensional Euler equations across layers, and two derivations
by averaging three-dimensional Lagrangians in Hamilton’s variational principle. Our
two variational derivations differ in their treatment of the coupling between layers. The
latter derivations guarantee the existence of conservation laws for energy, momentum
and potential vorticity in our equations. These laws are related to symmetries of
the variational principle by Noether’s theorem, and the symmetries are preserved by
our averaging procedure. Our construction of a vector potential for a wide class of
spatially varying Ω extends the variational formulation of Dellar & Salmon (2005),
which relied upon constant Ω , and corrects an error in their derivation by averaging
the three-dimensional equations when ∂xΩx + ∂yΩy �= 0.

This coupling between layers makes our derivations, especially the derivations from
Hamilton’s principle, much more involved than those for a single layer. Our three-
dimensional variational formulation is expressed using Lagrangian particle labels.
This gives a formulation very close to Hamilton’s principle for particle mechanics and
avoids the need to introduce extraneous variables such as Lin constraints or Clebsch
potentials (see e.g. Salmon 1988). Lagrangian particle labels are also very convenient
for representing the interfaces between different fluid layers, which are themselves
Lagrangian surfaces. However, the reconstruction of particle positions from the labels
introduces a hidden coupling between layers. The vertical position of a particle in
layer i depends on the vertical position of the lower boundary of the layer, ηi+1 in
our notation, which, in turn, depends upon the labels in the layers i +1, . . . , N below.

Our first variational derivation uses the natural Lagrangian of kinetic energy minus
gravitational potential energy, plus an incompressibility constraint multiplied by a
pressure as a Lagrange multiplier. This is the Lagrangian that is given by Eckart
(1960b) for a homogenous fluid. However, the derivation of the equations of motion
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in a layered setting requires a very intricate exchange of integration variables between
the different layers. This is because the coupling between layers is exerted by particles
in adjacent positions on either side of a layer, not by particles with adjacent labels.
This coupling was made explicit in a two-layer formulation by Salmon (1982b) that
contained a double integral of a delta-function to tie the particle positions in the
two layers together. This formulation is equivalent to ours (see the Appendix), but
does not scale up easily to three or more layers. One would need to include triple
and higher integrals across all the layers in the system. As an alternative, we made
the coupling between layers explicit by introducing additional terms the Lagrangian.
These term represent the work done on each layer by the pressure exerted by the layers
above (c.f. Miles & Salmon 1985). With these extra terms to make the previously
hidden coupling explicit, we derived the same equations of motion from independent
variations of the label-to-particle map within each layer.

The momentum equations we have derived are, in dimensionless form,

Ro

(
∂ui

∂t
+ (ui · ∇)ui

)
+

(
Ωz0 − 1

2
ε∇ ·

(
(ηi + ηi+1) Ω

))
ẑ × ui

+ ∇
{

Bu ηi + 1
2
εhi(viΩx − uiΩy) +

1

ρi

i−1∑
j=1

ρjhj

(
Bu + ε

(
vjΩx − ujΩy

) )}

− ε Ω × ẑ ∇ ·
{

1
2
hiui +

N∑
j=i+1

hj uj

}
= 0, (3.22)

together with the usual continuity equations ∂thi + ∇ · (hiui) = 0. They contain several
non-traditional corrections to the standard multilayer shallow water equations, as
derived under the traditional approximation. The traditional Coriolis term 2Ωz ẑ × ui

is modified by replacing the vertical component Ωz with the component of the
full rotation vector Ω that is perpendicular to each layer’s midsurface. Second, the
pressure changes from the hydrostatic pressure to the quasi-hydrostatic pressure
(White & Bromley 1995; White et al. 2005), due to the non-traditional Coriolis
term viΩx − uiΩy in the vertical momentum equation. The last term in (3.22) has
no analogue under the traditional approximation. It arises from the non-traditional
Coriolis force due to the vertical velocity, as reconstructed from the divergence of the
horizontal velocity under the assumption of columnar motion, and may be rewritten
as the time derivative ∂t (ε Ω × ẑ zi), where zi(x, y, t) is the vertical coordinate of
the midsurface of the ith layer. This time derivative then combines with the time
derivative of the velocity to form the time derivative of the canonical momentum as
shown in § 5.2.

We have shown that these equations inherit conservation laws for energy,
momentum and potential vorticity from the underlying three-dimensional equations,
as is guaranteed by our derivations from Hamilton’s principle. The conserved
components of momentum include additional non-traditional terms proportional to
zi as explained above. These terms represent the angular momentum gained or lost as
fluid elements change their vertical position, and hence their distance from the rotation
axis. This effect is absent in the traditional approximation, because a fluid element
displaced vertically is also displaced parallel to the rotation axis. The conserved energy
density is unchanged by non-traditional effects, just as it is unchanged by rotation
about a vertical axis, but the energy flux gains additional terms reflecting the work
done by the quasi-hydrostatic (as opposed to purely hydrostatic) pressure on the
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boundary of a control volume. Finally, the potential vorticity qi that is materially
conserved within each layer becomes

qi =
1

hi

{
Ωz0 − ε∇ · (ziΩ) + Ro

(
∂vi

∂x
− ∂ui

∂y

)}
. (5.11)

The vertical component Ωz of the rotation vector is replaced by the component
perpendicular to the layer’s midsurface z = zi(x, y, t). We expect this change to be
significant in the dynamics of cross-equatorial ocean currents, because the change
in sign of Ωz at the equator severely constrains the ability of fluid parcels to cross
the equator (e.g. Stommel & Arons 1960; Nof & Olson 1993). In our non-traditional
equations, this constraint may be at least partly alleviated by the interaction of
non-traditional Coriolis effects with suitable topography.

In Part II of this paper, we focus attention on the two-layer version of our
equations. We show that, like the standard two-layer shallow water equations, they
are well-posed for geophysically reasonable values of the velocity difference between
the two layers. We then turn to a study of linear waves and show that our two-layer
equations support sub-inertial waves. These waves are permitted only by the presence
of the non-traditional Coriolis terms and may play an important role in transferring
energy from near-surface waves into the deep ocean, and hence in driving mixing
in the deep ocean (Gerkema & Shrira 2005a ,b). Our study identifies a distinguished
limit in which sufficiently long near-inertial waves are substantially affected by even
notionally very small non-traditional effects. These effects couple the eastward and
westward propagating branches of surface and internal waves. Long eastward surface
waves connect with westward internal waves and vice versa. More work will explore
analytical solutions for cross-equatorial currents, like those of Nof & Olson (1993),
in the two-layer version of our equations.

A.L.S. is supported by an EPSRC Doctoral Training Account award. P.J.D.’s
research is supported by an EPSRC Advanced Research Fellowship grant
EP/E054625/1.

Appendix. Connection with Salmon’s two-layer variational formulation

The two-layer version of our derivation in § 4.5 is equivalent to Salmon’s (1982b)
derivation of the two-layer shallow water equations from the Lagrangian

L = ρ1

∫∫
da1 db1 L1 + ρ2

∫∫
da2 db2 L2 + ρ1

∫∫
da1 db1

∫∫
da2 db2 L12, (A.1)

which we write as L = L1 + L2 + L12. The Lagrangian densities for i = 1, 2 are

Li =
1

2

(
∂xi

∂τ

)2

+
1

2

(
∂yi

∂τ

)2

− 1

2
g

∂(ai, bi)

∂(xi, yi)
(A.2)

in dimensional variables, and we have excluded rotation for simplicity. The two layers
are coupled through L12, which is expressed as a simultaneous integral over both
layers of a delta function density,

L12 = −gδ(x1 − x2), (A.3)

that ties together the particle positions x1 and x2 in the two layers.
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Using da1 db1 = h1(x1, t) dx1 dy1 we transform L12 into

L12 = −ρ1

∫∫
dx1 dy1

∫∫
da2 db2 gh1(x1, t) δ(x1 − x2), (A.4)

and then perform the integrations over x1 and y1 to obtain

L12 = −ρ1

∫∫
da2 db2 gh1(x2, t). (A.5)

The total Lagrangian (A.1) thus becomes

L = ρ1

∫∫
da1 db1

{
1
2
|ẋ1|2 − 1

2
gh1

}
+ ρ2

∫
da2 db2

{
1
2
|ẋ2|2 − 1

2
gh2 − ρ1

ρ2

gh1(x2, t)

}
,

(A.6)

which is the same as (4.29) above with N = 2 and i = 2. Varying the map (a2, τ ) �→
x2(a2, τ ) gives the lower layer equation of motion.

Conversely, using da2 db2 = h2(x2, t) dx2 dy2, we transform L12 into

L12 = −ρ1

∫∫
da1 db1

∫∫
dx2 dy2 gh2(x2, t) δ(x1 − x2), (A.7)

and then perform the integration over x2 to obtain

L12 = −ρ1

∫∫
da1 db1 gh2(x1, t). (A.8)

The total Lagrangian (A.1) then becomes

L = ρ1

∫∫
da1 db1

{
1
2
|ẋ1|2 − 1

2
gh1 − gh2(x1, t)

}
+ ρ2

∫∫
da2 db2

{
1
2
|ẋ2|2 − 1

2
gh2

}
,

(A.9)
which is the same as (4.29) above with N = 2 and i = 1. Varying the map (a1, τ ) �→
x1(a1, τ ) gives the upper layer equation of motion.

Salmon’s (1982b) expression of L12 as an integral over both layers explicitly
indicates that it contributes to the equations of motion in both layers, as found
by varying x1 and x2 independently. However, extending this approach to n layers
would require writing the coupling terms as integrals over all n layers. This is avoided
by the approaches we presented in this paper. Our first approach is mathematically
equivalent to Salmon’s, but we transform directly from (A.5) to (A.8) without the
intermediate multiple integral. Our second approach avoids this issue completely by
expressing the coupling using explicit Wi terms in the Lagrangians.
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